
Evaluation of Memory Consistency
Models in Titanium

Introduction

• What should be the correct ordering of memory
operations?

• Uniprocessor: follow the program order; read and writes
to different locations can be reordered safely

• Multiprocessor: correct semantics not clear; memory
operations from different processors are not ordered

• Memory Consistency Models: Impose restrictions on the
ordering of shared memory accesses
— strict: easy to program, but prevents many optimizations and

generally thought to be slow
— relaxed: better performance, but hard to code

Sequential Consistency

• Definition [Lamport 79]:
— A system is sequentially consistent if the result of any execution is the

same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program

• Enforce program ordering for single processor
• Memory accesses appear to execute atomically
• Few optimizations possible (no register allocation, write

pipelining, etc)

Read Write,Read Write Read

Write Write

Weak Ordering

• Relax all program order requirements
• Ordering is preserved only at synchronization points;

read and write between barriers can be performed in
any order

• Explicit sync instruction to maintain program order
• Eliminates almost all memory latencies, allows most

reordering optimizations
• 2x over naïve SC implementation in some study
• Used by PowerPC

sync syncReordered read/write

Effects of consistency models on program
understanding

P1
//initially A, B = 0
A = 1
If (B == 0)

foo();

P2

B = 1
If (A == 0)

foo();

• SC: Either P1 or P2(or neither)
will call foo(), but not both
• WC: foo() may be called by both
P1 and P2, because of WR
reordering

Enforce SC Using the Compiler

• Compiler can hide the weak consistency model
of the underlying machine by inserting barriers

• Gives more flexibility to programmers, can
choose between simplicity and performance

• SC can be violated at two levels

• Software level: register allocation, code motion,
common subexpression elimination, etc.

• Hardware level: memory access reordering, read
bypass pending write, non-blocking reads, etc.

Enforcing SC in Titanium

• Titanium compiler: disallow optimizations that could
violate SC.
— Only one: lifting of invariant exp out of loops

• GCC: One-at-a-time approach by adding fence
instructions between accesses to non-stack variables

• asm volatile ($fence : : : “memory”)
• Hardware:

— Pentium III: $fence = locked instruction
— Power3: $fence = sync instruction

• Can do better if apply delay set analysis

Data Sharing Analysis

• If data is private, no need to enforce sequential
consistency on memory operations

• Naïve: fence on every memory access (e.g., C)
• Titanium SC: distinguishes between stack (private)

and heap (shared) data
• Titanium sharing inference:

—Late : no deference/assignment of global pointers to
private data

—Early: Shared data cannot transitively reach private
data

—Late qualifies more variables to be private

Experimental Setup

• Machine Description
— Millennium Node: 4-way Pentium III (PC model)
— Seaborg: 16-way IBM Power3 chips (WO model)

• Benchmarks: Titanium Programs
— Pi: Monte Carlo simulation
— Sample-sort: distributed sorting algorithm
— Cannon: matrix multiplication
— 3d-fft: 3D fast-fourier transform
— Fish-grid: n-body simulation
— Pps: poisson solver for uniform grid
— Amr: poisson solver on an adaptive mesh

Running Time on Millennium Node

• 10% to 3x performance gap
• sharing analysis does not help except for small
benchmarks

Running Time

0
0.5

1
1.5

2
2.5

3
3.5

pi
sam

ple
-so

rt
ca

nn
on

3d
-fft

fish
-gr

id
fish

-no
-gr

id am
r

pp
s

Benchmark

No
rm

ali
ze

d
Tim

e

Weak
Sharing-late
Sharing-Early
sequential

Performance Analysis

• Effect of Titanium compiler optimizations

• Effectiveness of sharing inference

• Effects of GCC optimizations

• Effects of architecture reordering

• Hardware performance data

Effect of Titanium compiler
optimizations

• Collect how many lifting operations were
prevented by SC

• Turns out the restriction makes virtually no
difference; only in pps, amr do we see
expressions not lifted because of SC
restriction (5, 6%)

• Running pps,amr with loop lifting constraint
turned off yields similar performance ratio

• Makes sense intuitively since rarely do
programmers leave an invariant assignment
to shared variables in the loop

Data Sharing Analysis

Running time with fence on every memory access

0
2
4
6
8

10
12
14
16

pi
sa

mple
-so

rt
ca

nn
on

3d
-fft

fis
h-g

rid
fis

h-n
o-g

rid pp
s

am
r

Benchmarks

N
or

m
al

iz
ed

 R
un

ni
ng

Ti

m
e weak

sequential

• 2.5 to 14x performance gap between SC and weak
• Identifying stack data as private is very important in
lowering the performance penalty of SC

Effectiveness of Sharing Inference

Effectiveness of Sharing Inference

0
20
40
60
80

100

pi
sa

mple
-so

rt

3d
-fft

fis
h-g

rid
fis

h-n
o-g

rid am
r

Benchmarks and Sharing Options

%
 o

f F
ie

ld
/A

rr
ay

Ac

ce
ss

es

no fence
fence

• First bar is early, second is late enforcement
• Effective for small benchmarks, not so for large ones

Effects of GCC optimization (on Mill
Node)

Runtime with no GCC optimization

00.5
11.5
22.5
3

pi sample-
sort

3d-fft cannon fish-grid fish-no-
grid

Benchmarks

N
or

m
al

iz
ed

R

un
ni

ng
 T

im
e

Relaxed
Sequential

• Done by disabling GCC optimizations
• no major decrease in performance gap

Effects of Architecture Reordering (on Mill
Node)

• Compiler does not prevent processor from reordering memory
operations
• Decrease in performance gap observed
• Means Performance penalty for SC is higher at hardware level

Running Time, no restriction on hardware optimization

0
0.5

1
1.5

2
2.5

3

pi sample-
sort

3d-ftt cannon fish-grid fish-no-
grid

Benchmarks

No
rm

ali
ze

d
Tim

e

Weak
Sequential

Number of Sync Instructions

363084393630698436560155109288amr

115981281157426311307479501567fish-grid

609495360949536094953373d-fft

4898680816416452pi

sequentiallateearlyweakBenchmark

Breakdown of Execution Time: Pi
(millions of cycles)

Breakdown of execution time -- pi

0
5000

10000
15000
20000
25000

weak late early sequential

consistency model

m
ill

io
ns

 o
f c

yc
le

s

total
idle
read stall
write stall

• SC’s performance penalty mainly caused by increase in idle
cycles(waiting for sync instructions to complete)

Conclusion

• Performance gaps exists between SC and relaxed
models
— Size of gap is Highly dependent on the benchmarks
— In general, not very expensive

• Architecture reordering accounts for most of the
performance difference; Titanium and gcc optimization’s
effect appear limited

• Sharing inference is not effective in reducing cost of SC
• At the hardware level

— SC causes significant higher number of idle cycles, because of sync
instructions

